Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
91
92
93
94
95
96
97
98
99
100
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/093.jpg
"
pagenum
="
65
"/>
tes
<
emph
type
="
italics
"/>
TR,
<
emph.end
type
="
italics
"/>
vel plura puncta
<
emph
type
="
italics
"/>
P,
<
emph.end
type
="
italics
"/>
devenietur ſemper ad lineas totidem
<
lb
/>
<
arrow.to.target
n
="
note41
"/>
<
emph
type
="
italics
"/>
YH,
<
emph.end
type
="
italics
"/>
vel
<
emph
type
="
italics
"/>
PH,
<
emph.end
type
="
italics
"/>
a dictis punctis
<
emph
type
="
italics
"/>
Y
<
emph.end
type
="
italics
"/>
vel
<
lb
/>
<
figure
id
="
id.039.01.093.1.jpg
"
xlink:href
="
039/01/093/1.jpg
"
number
="
36
"/>
<
lb
/>
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
ad umbilicum
<
emph
type
="
italics
"/>
H
<
emph.end
type
="
italics
"/>
ductas, quæ vel
<
lb
/>
æquantur axibus, vel datis longitu
<
lb
/>
dinibus
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
differunt ab iiſdem, at
<
lb
/>
que adeo quæ vel æquantur ſibi invi
<
lb
/>
cem, vel datas habent differentias; &
<
lb
/>
inde, per Lemma ſuperius, datur umbi
<
lb
/>
licus ille alter
<
emph
type
="
italics
"/>
H.
<
emph.end
type
="
italics
"/>
Habitis autem um
<
lb
/>
bilicis una cum axis longitudine (quæ
<
lb
/>
vel eſt
<
emph
type
="
italics
"/>
YH
<
emph.end
type
="
italics
"/>
; vel, ſi Trajectoria Ellipſis eſt,
<
emph
type
="
italics
"/>
PH+SP
<
emph.end
type
="
italics
"/>
; ſin Hy
<
lb
/>
perbola,
<
emph
type
="
italics
"/>
PH-SP
<
emph.end
type
="
italics
"/>
) habetur Trajectoria.
<
emph
type
="
italics
"/>
Q.E.I.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note41
"/>
LIBER
<
lb
/>
PRIMUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Scholium.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Caſus ubi dantur tria puncta ſic ſolvitur expeditius. </
s
>
<
s
>Dentur
<
lb
/>
puncta
<
emph
type
="
italics
"/>
B, C, D.
<
emph.end
type
="
italics
"/>
Junctas
<
emph
type
="
italics
"/>
BC, CD
<
emph.end
type
="
italics
"/>
produc ad
<
emph
type
="
italics
"/>
E, F,
<
emph.end
type
="
italics
"/>
ut ſit
<
emph
type
="
italics
"/>
EB
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
<
emph
type
="
italics
"/>
EC
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
SB
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SC,
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
FC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
FD
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
SC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SD.
<
emph.end
type
="
italics
"/>
Ad
<
emph
type
="
italics
"/>
EF
<
emph.end
type
="
italics
"/>
ductam
<
lb
/>
& productam demitte normales
<
emph
type
="
italics
"/>
SG, BH,
<
emph.end
type
="
italics
"/>
inque
<
emph
type
="
italics
"/>
GS
<
emph.end
type
="
italics
"/>
infinite
<
lb
/>
producta cape
<
emph
type
="
italics
"/>
GA
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
AS
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
Ga
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
aS
<
emph.end
type
="
italics
"/>
ut eſt
<
emph
type
="
italics
"/>
HB
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
BS
<
emph.end
type
="
italics
"/>
; & erit
<
lb
/>
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
vertex, &
<
emph
type
="
italics
"/>
Aa
<
emph.end
type
="
italics
"/>
axis principalis Trajectoriæ: quæ, perinde ut
<
emph
type
="
italics
"/>
GA
<
emph.end
type
="
italics
"/>
<
lb
/>
major, æqualis, vel minor fuerit quam
<
emph
type
="
italics
"/>
AS,
<
emph.end
type
="
italics
"/>
erit Ellipſis, Parabola
<
lb
/>
vel Hyperbola; pun
<
lb
/>
<
figure
id
="
id.039.01.093.2.jpg
"
xlink:href
="
039/01/093/2.jpg
"
number
="
37
"/>
<
lb
/>
cto
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
in primo caſu
<
lb
/>
cadente ad eandem
<
lb
/>
partem lineæ
<
emph
type
="
italics
"/>
GF
<
emph.end
type
="
italics
"/>
<
lb
/>
cum puncto
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
; in
<
lb
/>
ſecundo caſu abeunte
<
lb
/>
in infinitum; in tertio
<
lb
/>
cadente ad contrari
<
lb
/>
am partem lineæ
<
emph
type
="
italics
"/>
GF.
<
emph.end
type
="
italics
"/>
<
lb
/>
Nam ſi demittantur
<
lb
/>
ad
<
emph
type
="
italics
"/>
GF
<
emph.end
type
="
italics
"/>
perpendicula
<
lb
/>
<
emph
type
="
italics
"/>
CI, DK
<
emph.end
type
="
italics
"/>
; erit
<
emph
type
="
italics
"/>
IC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
HB
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
EC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
EB,
<
emph.end
type
="
italics
"/>
hoc eſt, ut
<
emph
type
="
italics
"/>
SC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SB
<
emph.end
type
="
italics
"/>
; & vi
<
lb
/>
ciſſim
<
emph
type
="
italics
"/>
IC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SC
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
HB
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SB
<
emph.end
type
="
italics
"/>
ſive ut
<
emph
type
="
italics
"/>
GA
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SA.
<
emph.end
type
="
italics
"/>
Et ſimili argumento
<
lb
/>
probabitur eſſe
<
emph
type
="
italics
"/>
KD
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SD
<
emph.end
type
="
italics
"/>
in eadem ratione. </
s
>
<
s
>Jacent ergo puncta
<
emph
type
="
italics
"/>
B,
<
lb
/>
C, D
<
emph.end
type
="
italics
"/>
in Coniſectione circa umbilicum
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
ita deſcripta, ut rectæ omnes
<
lb
/>
ab umbilico
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
ad ſingula Sectionis puncta ductæ, ſint ad perpendicula
<
lb
/>
a punctis iiſdem ad rectam
<
emph
type
="
italics
"/>
GF
<
emph.end
type
="
italics
"/>
demiſſa in data illa ratione. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Methodo haud multum diſſimili hujus problematis ſolutionem
<
lb
/>
tradit Clariſſimus Geometra
<
emph
type
="
italics
"/>
de la Hire,
<
emph.end
type
="
italics
"/>
Conieorum ſuorum Lib. </
s
>
<
s
>
<
lb
/>
VIII. Prop. XXV. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>