Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
91
92
93
94
95
96
97
98
99
100
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/095.jpg
"
pagenum
="
67
"/>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
2. Ponamus jam Trapezii latera oppoſita
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
BD
<
emph.end
type
="
italics
"/>
non
<
lb
/>
<
arrow.to.target
n
="
note43
"/>
eſſe parallela. </
s
>
<
s
>Age
<
emph
type
="
italics
"/>
Bd
<
emph.end
type
="
italics
"/>
parallelam
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
& occurrentem tum rectæ
<
lb
/>
<
emph
type
="
italics
"/>
ST
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
t,
<
emph.end
type
="
italics
"/>
tum Conicæ ſectioni in
<
emph
type
="
italics
"/>
d.
<
emph.end
type
="
italics
"/>
Junge
<
emph
type
="
italics
"/>
Cd
<
emph.end
type
="
italics
"/>
ſecantem
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
r,
<
emph.end
type
="
italics
"/>
<
lb
/>
& ipſi
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
parallelam age
<
emph
type
="
italics
"/>
DM
<
emph.end
type
="
italics
"/>
<
lb
/>
<
figure
id
="
id.039.01.095.1.jpg
"
xlink:href
="
039/01/095/1.jpg
"
number
="
39
"/>
<
lb
/>
ſecantem
<
emph
type
="
italics
"/>
Cd
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
M
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
N.
<
emph.end
type
="
italics
"/>
<
lb
/>
Jam ob ſimilia triangula
<
emph
type
="
italics
"/>
BTt,
<
lb
/>
DBN
<
emph.end
type
="
italics
"/>
; eſt
<
emph
type
="
italics
"/>
Bt
<
emph.end
type
="
italics
"/>
ſeu
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
Tt
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
<
emph
type
="
italics
"/>
DN
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
NB.
<
emph.end
type
="
italics
"/>
Sic &
<
emph
type
="
italics
"/>
Rr
<
emph.end
type
="
italics
"/>
eſt ad
<
lb
/>
<
emph
type
="
italics
"/>
AQ
<
emph.end
type
="
italics
"/>
ſeu
<
emph
type
="
italics
"/>
PS
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
DM
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
AN.
<
emph.end
type
="
italics
"/>
<
lb
/>
Ergo, ducendo antecedentes in
<
lb
/>
antecedentes & conſequentes in
<
lb
/>
conſequentes, ut rectangulum
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
<
lb
/>
in
<
emph
type
="
italics
"/>
Rr
<
emph.end
type
="
italics
"/>
eſt ad rectangulum
<
emph
type
="
italics
"/>
PS
<
emph.end
type
="
italics
"/>
in
<
lb
/>
<
emph
type
="
italics
"/>
Tt,
<
emph.end
type
="
italics
"/>
ita rectangulum
<
emph
type
="
italics
"/>
NDM
<
emph.end
type
="
italics
"/>
eſt
<
lb
/>
ad rectangulum
<
emph
type
="
italics
"/>
ANB,
<
emph.end
type
="
italics
"/>
& (per Caſ.1) ita rectangulum
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
Pr
<
emph.end
type
="
italics
"/>
eſt
<
lb
/>
ad rectangulum
<
emph
type
="
italics
"/>
PS
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
Pt,
<
emph.end
type
="
italics
"/>
ac diviſim ita rectangulum
<
emph
type
="
italics
"/>
PQXPR
<
emph.end
type
="
italics
"/>
<
lb
/>
eſt ad rectangulum
<
emph
type
="
italics
"/>
PSXPT. Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note43
"/>
LIBER
<
lb
/>
PRIMUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
3. Ponamus denique lineas
<
lb
/>
<
figure
id
="
id.039.01.095.2.jpg
"
xlink:href
="
039/01/095/2.jpg
"
number
="
40
"/>
<
lb
/>
quatuor
<
emph
type
="
italics
"/>
PQ, PR, PS, PT
<
emph.end
type
="
italics
"/>
non
<
lb
/>
eſſe parallelas lateribus
<
emph
type
="
italics
"/>
AC, AB,
<
emph.end
type
="
italics
"/>
<
lb
/>
ſed ad ea utcunQ.E.I.clinatas. </
s
>
<
s
>Ea
<
lb
/>
rum vice age
<
emph
type
="
italics
"/>
Pq, Pr
<
emph.end
type
="
italics
"/>
parallelas
<
lb
/>
ipſi
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
; &
<
emph
type
="
italics
"/>
Ps, Pt
<
emph.end
type
="
italics
"/>
parallelas
<
lb
/>
ipſi
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
; & propter datos angu
<
lb
/>
los triangulorum
<
emph
type
="
italics
"/>
PQq, PRr,
<
lb
/>
PSs, PTt,
<
emph.end
type
="
italics
"/>
dabuntur rationes
<
lb
/>
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
Pq, PR
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
Pr, PS
<
emph.end
type
="
italics
"/>
<
lb
/>
ad
<
emph
type
="
italics
"/>
Ps,
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
PT
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
Pt
<
emph.end
type
="
italics
"/>
; atque adeo rationes compoſitæ
<
emph
type
="
italics
"/>
PQXPR
<
emph.end
type
="
italics
"/>
<
lb
/>
ad
<
emph
type
="
italics
"/>
PqXPr,
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
PSXPT
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
PsXPt.
<
emph.end
type
="
italics
"/>
Sed, per ſuperius de
<
lb
/>
monſtrata, ratio
<
emph
type
="
italics
"/>
PqXPr
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
PsXPt
<
emph.end
type
="
italics
"/>
data eſt: Ergo & ratio
<
lb
/>
<
emph
type
="
italics
"/>
PQXPR
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
PSXPT. Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
LEMMA XVIII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Iiſdem poſitis, ſi rectangulum ductarum ad oppoſita duo latera Tra
<
lb
/>
pezii
<
emph.end
type
="
italics
"/>
PQXPR
<
emph
type
="
italics
"/>
ſit ad rectangulum ductarum ad reliqua duo late
<
lb
/>
ra
<
emph.end
type
="
italics
"/>
PSXPT
<
emph
type
="
italics
"/>
in data ratione; punctum
<
emph.end
type
="
italics
"/>
P,
<
emph
type
="
italics
"/>
a quo lineæ ducuntur,
<
lb
/>
tanget Conicam ſectionem circa Trapezium deſcriptam.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>