Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
91
92
93
94
95
96
97
98
99
100
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/097.jpg
"
pagenum
="
69
"/>
vertetur in geminas Rectas, quarum una eſt recta illa in quam pun
<
lb
/>
<
arrow.to.target
n
="
note45
"/>
ctum
<
emph
type
="
italics
"/>
p
<
emph.end
type
="
italics
"/>
incidit, & altera eſt recta qua alia duo ex punctis quatuor jun
<
lb
/>
guntur. </
s
>
<
s
>Si Trapezii anguli duo oppoſiti ſimul ſumpti æquentur
<
lb
/>
duobus rectis, & lineæ quatuor
<
emph
type
="
italics
"/>
PQ, PR, PS, PT
<
emph.end
type
="
italics
"/>
ducantur ad
<
lb
/>
latera ejus vel perpendiculariter vel in angulis quibuſvis æqualibus,
<
lb
/>
ſitque rectangulum ſub duabus ductis
<
emph
type
="
italics
"/>
PQXPR
<
emph.end
type
="
italics
"/>
æquale rectangu
<
lb
/>
lo ſub duabus aliis
<
emph
type
="
italics
"/>
PSXPT,
<
emph.end
type
="
italics
"/>
Sectio conica evadet Circulus. </
s
>
<
s
>Idem
<
lb
/>
fiet ſi lineæ quatuor ducantur in angulis quibuſvis & rectangulum
<
lb
/>
ſub duabus ductis
<
emph
type
="
italics
"/>
PQXPR
<
emph.end
type
="
italics
"/>
ſit ad rectangulum ſub aliis duabus
<
lb
/>
<
emph
type
="
italics
"/>
PSXPT
<
emph.end
type
="
italics
"/>
ut rectangulum ſub ſinubus angulorum
<
emph
type
="
italics
"/>
S, T,
<
emph.end
type
="
italics
"/>
in quibus
<
lb
/>
duæ ultimæ
<
emph
type
="
italics
"/>
PS, PT
<
emph.end
type
="
italics
"/>
ducuntur, ad rectangulum ſub ſinubus angu
<
lb
/>
lorum
<
emph
type
="
italics
"/>
Q, R,
<
emph.end
type
="
italics
"/>
in quibus duæ primæ
<
emph
type
="
italics
"/>
PQ, PR
<
emph.end
type
="
italics
"/>
ducuntur. </
s
>
<
s
>Cæteris
<
lb
/>
in caſibus Locus puncti
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
erit aliqua trium figurarum quæ vulgo
<
lb
/>
nominantur Sectiones Conicæ. </
s
>
<
s
>Vice autem Trapezii
<
emph
type
="
italics
"/>
ABCD
<
emph.end
type
="
italics
"/>
ſub
<
lb
/>
ſtitui poteſt Quadrilaterum cujus latera duo oppoſita ſe mutuo in
<
lb
/>
ſtar diagonalium decuſſant. </
s
>
<
s
>Sed & e punctis quatuor
<
emph
type
="
italics
"/>
A, B, C, D
<
emph.end
type
="
italics
"/>
<
lb
/>
poſſunt unum vel duo abire ad infinitum, eoque pacto latera fi
<
lb
/>
guræ quæ ad puncta illa convergunt, evadere parallela: quo in
<
lb
/>
caſu Sectio Conica tranſibit per cætera puncta, & in plagas paralle
<
lb
/>
larum abibit in infinitum. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note45
"/>
LIBER
<
lb
/>
PRIMUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
LEMMA XIX.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Invenire
<
expan
abbr
="
punctũ
">punctum</
expan
>
<
emph.end
type
="
italics
"/>
P,
<
emph
type
="
italics
"/>
a quo ſi rectæ
<
emph.end
type
="
italics
"/>
<
lb
/>
<
figure
id
="
id.039.01.097.1.jpg
"
xlink:href
="
039/01/097/1.jpg
"
number
="
42
"/>
<
lb
/>
<
emph
type
="
italics
"/>
quatuor
<
emph.end
type
="
italics
"/>
PQ, PR, PS, PT,
<
lb
/>
<
emph
type
="
italics
"/>
ad alias totidem poſitione da
<
lb
/>
tas rectas
<
emph.end
type
="
italics
"/>
AB, CD, AC, BD,
<
lb
/>
<
emph
type
="
italics
"/>
ſingulæ ad ſingulas in datis
<
lb
/>
angulis ducantur,
<
expan
abbr
="
rectangulũ
">rectangulum</
expan
>
<
lb
/>
ſub duabus ductis,
<
emph.end
type
="
italics
"/>
PQXPR,
<
lb
/>
<
emph
type
="
italics
"/>
ſit ad rectangulum ſub aliis
<
lb
/>
duabus,
<
emph.end
type
="
italics
"/>
PSXPT,
<
emph
type
="
italics
"/>
in data ra
<
lb
/>
tione.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Lineæ
<
emph
type
="
italics
"/>
AB, CD,
<
emph.end
type
="
italics
"/>
ad quas rectæ duæ
<
emph
type
="
italics
"/>
PQ, PR,
<
emph.end
type
="
italics
"/>
unum rectan
<
lb
/>
gulorum continentes ducuntur, conveniant cum aliis duabus poſi
<
lb
/>
tione datis lineis in punctis
<
emph
type
="
italics
"/>
A, B, C, D.
<
emph.end
type
="
italics
"/>
Ab eorum aliquo
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
age
<
lb
/>
rectam quamlibet
<
emph
type
="
italics
"/>
AH,
<
emph.end
type
="
italics
"/>
in qua velis punctum
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
reperiri. </
s
>
<
s
>Secet ea
<
lb
/>
lineas oppoſitas
<
emph
type
="
italics
"/>
BD, CD,
<
emph.end
type
="
italics
"/>
nimirum
<
emph
type
="
italics
"/>
BD
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
H
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
CD
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
I,
<
emph.end
type
="
italics
"/>
& ob
<
lb
/>
datos omnes angulos figuræ, dabuntur rationes
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
PA
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
PA
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>